
A FACILE PREPARATION OF 1-PERFLUOROALKYLALKENES AND ALKYNES. PALLADIUM CATALYZED REACTION OF PERFLUOROALKYL IODIDES WITH ORGANOTIN COMPOUNDS

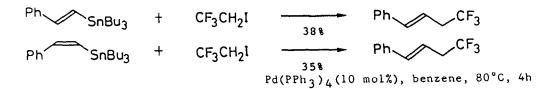
Seijiro MATSUBARA^{*}, Makoto MITANI, and Kiitiro UTIMOTO

Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo, Kyoto, 606 Japan

Summary: Alkenyl, allyl, and alkynylstannanes react with perfluoroalkyl iodides in the presence of a catalytic amount of Pd(PPh₃)₄ to give alkenes and alkynes bearing perfluoroalkyl group.

Several perfluoroalkylation have been reported and utilized for the synthesis of various organofluorine compounds,¹ for example, the coupling reaction using perfluoroalkylcopper reagents² or perfluoroalkylzinc reagents,³ the nucleophilic reaction to (perfluoroalkyl)phenyliodonium trifluoromethanesulfonate (FITS) reagent,⁴ and the addition of perfluoroalkyl iodides to carbon-carbon multiple bond.^{5,6,7} Although various types of perfluoroalkylation have been disclosed, direct coupling of an alkenyl group with a perfuoroalkyl halide giving perfluoroalkylated olefins has not been established. This paper describes a novel introduction of perfluoroalkyl group on olefinic or acetylenic carbon by the Pd(0) catalyzed cross-coupling reaction between organotin compounds and perfluoroalkyl iodides.⁸

A solution of $n-C_4F_9I$ (2.0 mmol, 0.70 g) in hexane (2.0 ml) was added dropwise to a mixture of (E)-1-phenyl-2-tributylstannylethene (1.0 mmol, 0.40 g) and Pd(PPh₃)₄ (0.10 mmol, 0.11 g) in hexane (3.0 ml).⁹ The whole was stirred for 4 h at 70°C. The resulting mixture was poured into a mixture of ether and saturated KF aqueous solution (10 ml),¹⁰ and extracted with ether. The separated organic layer was dried (Na₂SO₄) and concentrated. Purification by preparative thin layer chromatography (hexane) on silica gel gave (E)-1-phenyl-2-nonafluorobutylethene in 70% yield (0.23 g).

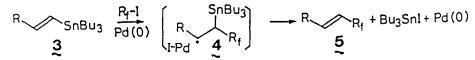

Alkenyl-, allyl-, and alkynylstannanes react analogously and results are summarized in Table. To examine stereospecificity of the reaction,

Run	Substrates	R _f I (eq)	Temp	hr	Products	Yıeids(%) ^b
1	PhSnBu ₃	n-C ₄ F ₉ I(2.0)	70°C	4h	Phn-C ₄ F ₉	70%
2		CF ₃ I(excess)	80°C ^{c,d}	3h	Ph CF ₃	11% ^e
3	Ph SnBug	n-C ₄ F ₉ I(2.0)	70°C	4h	₽h৵৵_n-C ₄ Fg	70%
4	SnBu ₃	n-C ₆ F ₁₃ I(1.2)	R.T.	lh	//-C6F13	100% ^e
5		n-C ₆ F ₁₃ I(3.0)	70°C	3h	n-C ₆ F ₁₃	64%
6		CF ₃ I(excess)	_{R.T.} c,d	3h	CF3	24%e
7	он ^f SnBu ₃	n-C ₄ F ₉ I(2.0)	70°C	4h	୷ୣୖ୵ୡ <mark>ୢ</mark> ଽୢୢୢଽୢୖ୵ୄୢୄୣ୰ୄୖ୰ୄ	52%
8	Me OH SnBuz	n-C ₄ F ₉ I(2.0)	70°C	4h	n-C4Fg OH	68%
9	Me3SnC=C(CH2)5Me	n-C ₆ F ₁₃ I(2.0)	70°C	6h	∩-C ₆ F ₁₃ C≡C(CH ₂) ₅ Me	55% ^e
10	Me₃SnC≡C(CH₂)₄OTHP	n-C ₄ F ₉ I(2.0)	70°C	6h	n-Ç ₄ FgC≡C(CH ₂)₄OTHP	60%
11	Me ₃ SnC≡CPh	n-C ₆ F ₁₃ I(2.0)	70°C	6h	_{n−} C ₆ F ₁₃ C≡CPh	27% ^e

Table. Introduction of Perfluoroalkyl Group into Organic Molecules^a

a) One mmol of substrate, 1.2-3.0 mmol of iodide, 0.1 mmol of $Pd(PPh_3)_4$, and 5 mL of hexane were employed. b) Isolated yields unless otherwise noted. c) Benzene was used as solvent. d) Bath temperature. Excess CF_3I was refluxing during reaction. e) ^{19}F -NMR yield using CF_3CO_2Et as an internal standard. f) See reference 11. (E)-1-phenyl-2-tributylstannylethene and (Z)-1-phenyl-2-tributylstannylethene were treated with $n-C_4F_9I$ under the same condition. The products were only (E)-1-phenyl-2-nonafluorobutylethene in both cases (run 1, 4). 2-Tributylstannyl-3-buten-1-ol and 3-tributylstannyl-4-penten-2-ol can be converted to perfluoroalkyl substituted compounds (run 9, 10) irrespective of hydroxyl group.

The above method can be applied to 1-iodo-2,2,2-trifluoroethane and Ealkene was obtained stereoselectively.


Acknowledgement: Financial support by Research Aid of Inoue Foundation of Science is acknowledged.

References and Notes

- M.R.C. Gerstenberger and A. Haas, <u>Angew. Chem. Int. Ed. Engl.</u>, 20, 647(1981); T. Fuchikami, <u>J. Syn. Org. Chem. Jpn.</u>, 42, 775(1984); P. Tarrant, <u>J. Fluorine Chem.</u>, 25, 69(1984); M. Schlosser, <u>Tetrahedron</u>, 34, 3(1978).
- Y. Kobayashi and I. Kumadaki, <u>Tetrahedron Lett.</u>, 1969, 4095; Y. Kobayashi, K. Yamamoto, and I. Kumadaki, <u>Tetrahedron Lett.</u>, 1979, 4071;
 N.V. Kondratenko, E.P. Vechirko, and L.M. Yagupolskii, <u>Synthesis</u>, 1980, 932; K. Matsui, E. Tobita, M. Ando, and K. Kondo, <u>Chem. Lett.</u>, 1981, 1719;
 H. Suzuki, Y. Yoshida, and A. Osuka, <u>Chem. Lett.</u>, 1982, 135; D.M. Wiemers and D.J. Burton, <u>J. Am. Chem. Soc.</u>, 108, 832(1986).
- N. Ishikawa and T. Kitazume, <u>J. Syn. Org. Chem. Jpn.</u>, **41**, 432(1983); T. Kitazume and N. Ishikawa, <u>Chem. Lett.</u>, **1982**, 137 and 1453; T. Kitazume, N. Ishikawa, <u>J. Am. Chem. Soc.</u>, **107**, 5186(1985).
- T. Umemoto, J. Syn. Org. Chem. Jpn., 41, 251(1983); T. Umemoto, Y. Kuriu, and S. Nakayama, <u>Tetrahedron Lett.</u>, 23, 4101(1982); T. Umemoto and Y. Gotoh, <u>Bull. Chem. Soc. Jpn.</u>, 59, 439(1986).
- The addition reaction has been effected by various manners. (a) Photolysis: R.N. Haszeldine and B.R. Steele, <u>J. Chem. Soc.</u>, 1953, 1199. (b) Pyrolysis: K. Leedham and R. N. Haszeldine, <u>J. Chem. Soc.</u>, 1954, 1634. (c) Electorolysis: P. Calas, P. Moreau, and A. Commeyras, <u>J. Chem. Soc.</u> <u>Chem. Commun.</u>, 1982, 433. (d) AIBN: N. O. Brace and J. E. Van Elswyk, <u>J. Org. Chem.</u>, 41, 766 (1976). References cited therein.
- 6. D.J. Burton and L.J. Kehoe, <u>J. Org. Chem.</u>, 36, 2596(1971); P.L. Coe and

N.E. Milner, <u>J. Organomet. Chem.</u>, **39**, 395(1972); T. Fuchikami and I. Ojima, <u>Tetrahedron Lett.</u>, 25, 303 and 307(1984); Q.-Y. Chen and Z.-Y. Yang, <u>J. Fluorine Chem.</u>, **28**, 2596(1985); <u>idem</u>, <u>J. Chem. Soc.</u>, <u>Chem.</u> Commun., **1986**, 498.

- 7. T. Ishihara, M. Kuroboshi, and Y. Okada, <u>Chem. Lett.</u>, 1986, 1895; H. Urata, and H. Yugari, T. Fuchikami, <u>Chem. Lett.</u>, 1987, 833.
- The palladium catalyzed coupling reaction of organotin compounds with allyl halide, vinyl iodide, or acyl chloride, see; M. Kosugi, Y. Shimizu, and T. Migita, <u>Chem. Lett.</u>, 1977, 1423; J. W. Labadie and J. K. Stille, <u>J. Am. Chem. Soc.</u>, 105, 6129(1983); F.K. Sheffy and J.K. Stille, <u>ibid.</u>, 105, 7173 (1983); W.F. Goure, M.E. Wright, P.D. Davis, S.S. Labadie, and J.K. Stille, <u>ibid.</u>, 106, 6417 (1984).
- 9. Benzene can also be used as solvent and suitable for the reaction using $\mbox{CF}_3\mbox{CH}_2\mbox{I}$ and $\mbox{CF}_3\mbox{I}.$
- 10. To remove organotin residue, aqueous KF solution is effective: J.E. Leibner and J. Jacobus, <u>J. Org. Chem.</u>, 44, 449(1979).
- 11. Vinylmagnesium bromide (1.5 M in THF, 25 mmol, 17 ml) was added to a suspension of CuI (12.5 mmol, 2.4 g) in THF (10 ml) at -23°C. After the whole was stirred for 0.5 h, tributylstannyloxirane (10 mmol, 3.3 g) in THF (10 ml) was added dropwise at -78°C. The resulting mixture was warmed up to 0°C gradually, and stirred for 3 h. Aqueous work-up and purification by silica gel chromatography gave 2-tributylstannyl-3-buten-l-ol (2.9 g) in 80% yield: S. Matsubara and K. Utimoto, unpublished results.
- 12. A possible mechanism is the addition of perfluoroalkyl radical to alkenylstannane followed by the elimination of iodotributylstannane. The role of palladium(0) in the reaction is a kind of radical initiator.⁷

Another possible one which was proposed by Stille⁸ for the palladium catalyzed coupling reaction of organotin compounds with acyl chloride could be applied. Stereoselectivity of the reaction (run 1 and 3 in Table), however, can not be explained by the latter.

(Received in Japan 27 June 1987)